О статье

ТЕОРЕМА О ЛИНИЯХ n-СИММЕТРИИ ВЫПУКЛОЙ ПЛОСКОЙ ПЛАСТИНЫ
THE THEOREM ON THE n-SYMMETRY LINES OF A CONVEX FLAT PLATE

DOI: 10.46573/2658-7459-2025-1-74-81

Скачать статью

Авторы

Ал.А. Шум, А.М. Ветошкин

Аннотация

Рассмотрено понятие момента n-го порядка плоской пластины относительно заданной прямой. Прямая является линией n симметрии в том случае, если моменты n-го порядка двух подпластин, на которые исходная пластина делится этой прямой, одинаковы. Установлено, что момент n-го порядка выпуклой плоской пластины относительно прямой L, проводимой параллельно данной прямой, достигает наименьшего значения тогда, когда прямая L представляет собой линию (n-1) сим¬метрии пластины.

Ключевые слова

момент n-го порядка, линия n симметрии, линия полумасс, линия равновесия, выпуклая плоская пластина, функция плотности, масса, центр масс, электрическая машина.

Abstract

The concept of the moment of the n-th order of a flat plate relative to a given straight line is considered. A straight line is a line of n-symmetry if the moments of the n-th order of the two sub-plates into which the original plate is divided by this line are the same. It is established that the moment of the n-th order of the convex flat plate relative to a straight line L, drawn parallel to a given straight line, reaches the smallest value when the straight line L is a line of (n 1)-symmetry of this plate.

Keywords

moment of n-th order, line of n-symmetry, half-mass line, equilibrium line, convex flat plate, density function, mass, center of mass, electric machine.