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 Аннотация. В статье изложены открытые в Тверском государственном 

техническом университете (ТвГТУ) на кафедре электроснабжения и электротехники 

закономерности теплового излучения газовых объемов электрических дуг в 

электродуговых сталеплавильных печах (ДСП) и факелов в факельных нагревательных 

печах (ФНП), топках паровых котлов (ТПК) электростанций, камерах сгорания (КС) 

газотурбинных установок (ГТУ), газотурбинных двигателей (ГТД). В части I статьи 

изложена существовавшая в 1950–1990-х годах, до открытия законов теплового излучения 

газовых объемов, проблема обучения студентов университетов расчетам теплообмена в 

ДСП, ФНП, ТПК, КС ГТУ. На основе открытых законов в ТвГТУ разработаны 

современные методики расчета теплообмена в ДСП, ФНП, ТПК, КС.  
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ВВЕДЕНИЕ 

В промышленно развитых странах, в том числе и в России, 35–40 % стали 

выплавляют в электродуговых сталеплавильных печах (ДСП). В металлургии России 

используют более 50 ДСП, каждая из которых обладает вместимостью 100–200 т металла, 

производительностью 1–2 млн т стали в год, мощностью электропечного трансформатора 

90–150 МВА. Одна ДСП расходует мощность, равную 50–75 % мощности, потребляемой 

областным центром с населением 500 тыс. человек и расположенной в нем промыш-

ленностью. Электрические дуги являются основными источниками тепла в ДСП [1]. По 

результатам энергетических балансов на долю дуг в современных ДСП приходится 

60–65 % тепла, поступающего в печь [2–4]. Вся электрическая мощность, подведенная к 

электрической дуге, преобразуется в ней в тепловую мощность. Подавляющая часть 

мощности дуги, 92–95 %, выделяется в столбе дуги в виде потока теплового излучения 

[2–6], который распространяется по всем направлениям рабочего пространства печей. 

Теплообмен излучением является основным видом теплообмена в ДСП. Столб дуги в ДСП 

представляет собой ионизированный газовый объем в форме усеченного конуса, который, 

в связи с равномерным распределением мощности по высоте столба, в расчетах 

теплообмена моделируется излучающим цилиндрическим ионизированным газовым 

объемом [1–14]. До конца 1970-х годов электрическая дуга в ДСП как источник теплового 

излучения представляла собой «черный ящик» [1–6]. 
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В XIX–XX веках в топках паровых машин на решетках сжигали уголь, торф, 

сланцы, дрова. Энергия, выделяемая при сжигании твердого топлива, на 90–95 % состоит 

из энергии теплового излучения. В 1879–1884 годах Стефан и Больцман открыли закон 

теплового излучения абсолютно черного тела (АЧТ), твердого тела для расчета 

теплообмена в печах, топках, работающих на твердом топливе. Плотность потока 

теплового излучения твердого тела, топлива на нагреваемое твердое тело по закону 

Стефана – Больцмана определяется по следующей формуле [15–20]: 

 

           (1) 

где  – коэффициент излучения абсолютно черного тела;  – приведенный коэф-

фициент излучения; ,  – температура, соответственно, горящего твердого топлива на 

колосниковых решетках и поверхности нагрева, К;  – угловой коэффициент (доля 

излучения) слоя топлива на поверхность нагрева. 

Закон Стефана – Больцмана (1) используется для определения плотностей потоков 

тепловых излучений твердого топлива (рис. 1), находящегося на колосниковых решетках 

(угля, торфа, сланцев), на экранные поверхности труб в топках паровых котлов (ТПК) 

электростанций, где он дает безукоризненный результат расчета [15]. 

 

 

Рис. 1. Горение твердого топлива на колосниковой решетке в ТПК 

 

МЕТОДЫ РАСЧЕТА ТЕПЛООБМЕНА ИЗЛУЧЕНИЕМ  

В ПЕЧАХ, ТОПКАХ, КАМЕРАХ СГОРАНИЯ В ХХ ВЕКЕ 

В 1940–1950-х годах начали добывать природный газ и использовать факельное 

сжигание газообразного, жидкого, пылеугольного топлива в факельных нагревательных 

печах (ФНП), ТПК электростанций, камерах сгорания газотурбинных установок (КС ГТУ), 

КС газотурбинных двигателей (ГТД). В России на тепловых электрических станциях 

установлено около 2 тыс. энергоблоков мощностью от 30 до 1 200 МВт. В ТПК сжигают 

45–50 % добываемых и используемых в мире, в том числе в России, топливно-

энергетических ресурсов. При факельном сжигании топлива в ФНП в металлургии и 

машиностроении, в ТПК, КС ГТУ тепловых электрических станций (ТЭС), КС ГТД 

тепловые потоки, падающие от газового объема факела на поверхности нагрева, на 

95–97 % состоят из потоков теплового излучения [15–20]. Процессы преобразования 

электрической энергии в газовом объеме электрической дуги, горящей в ДСП [21–28], и 
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энергии топлива при его факельном сжигании в ФНП, ТПК ТЭС, КС ГТУ ТЭС, КС ГТД 

идентичны: электрическая энергия в электрической дуге ДСП и энергия топлива при его 

факельном сжигании преобразуется в поток теплового излучения [14–21].  

В факеле, электрической дуге, излучаются квадриллионы атомов, излучение 

каждого атома на расчетную площадку необходимо учесть, что является сверхсложной 

проблемой. Для определения теплового излучения факела на расчетную площадку 

необходимо решить трехкратные интегральные уравнения теплообмена излучением. 

Решения трехкратных интегральных уравнений для определения потоков теплового 

излучения, угловых коэффициентов излучения факела на расчетную площадку, средней 

длины пути лучей от излучающих атомов до расчетной площадки в ХХ веке не было 

найдено. На протяжении XX века, до открытия в России законов теплового излучения 

ионизированных (электрическая дуга в ДСП) и неонизированных (факел в печах, топках, 

КС) газовых объемов, расчет теплообмена в печах, топках, КС осуществляли по закону 

Стефана – Больцмана теплового излучения поверхности  твердых тел [15–20, 29–33] 

(плоская модель). На основе закона Стефана – Больцмана были разработаны методы 

расчета Чандрасекара, Шварцильда – Шустера, зональный, численный и другие, однако 

они не получили распространения, так как излучение газовых объемов не подчиняется 

закону теплового излучения поверхности твердых тел и погрешность расчетов составляет 

200–300 % и более [3, 20].  

Например, в ФНП для нагрева слитков перед прокаткой мощность газового объема 

факела газокислородной горелки (ГКГ), созданного сжиганием газообразного топлива, 

составила 5 МВт при температуре 20 °С подаваемого в ГКГ воздуха. Среднемассовая 

температура газового объема факела составляет 1 300 °С [20]. Средняя плотность 

теплового потока излучения газового объема факела на расчетную площадку на слитках, 

рассчитанная по формуле (1), составляет 40 кВт/м2. При подогреве подаваемого в ГКГ 

воздуха до 600 °С среднемассовая температура газового объема факела возросла до 

2 000 °С , а мощность факела возросла на 17 %. При расчетах по выражению (1) плотность 

потока теплового излучения газового объема факела на расчетную площадку на слитках 

увеличилась с 40 до 200 кВт/м2, т.е. в 5 раз, скорость нагрева слитков также должна 

возрасти в 5 раз, что противоречит закону сохранения энергии. В реальных условиях 

эксплуатации нагреваемой печи при подогреве воздуха до 600 °С и увеличении мощности 

газового объема факела на 17 % плотность теплового потока от факела и скорость нагрева 

слитков увеличились на 17 %, т.е. прямо пропорционально увеличению мощности газового 

объема факела, а не температуре в четвертой степени [3]. Погрешность в расчетах 

теплового излучения газового объема факела на поверхность слитков по закону теплового 

излучения твердых тел (1) составила 427 %.   

В 1960–2000 годы студентов университетов, будущих конструкторов, обучали 

следующим методам расчета теплообмена излучением в ФНП, ТПК, КС [15–20]: 

статистического моделирования Монте-Карло, решения уравнений переноса 

Шварцшильца – Шустера и Эддингтона, итерационному Чандрасекара, итерационному 

Владимирова, сферических гармоник и другим. Для расчета теплообмена в ТПК 

наибольшее распространение получил метод зонального математического моделирования. 

Сущность зонального метода заключается в делении излучающих поверхностей и 

газовых объемов на зоны и замене непрерывного распределения температур и физических 

характеристик кусочно-непрерывным, состоящим из конечного числа излучающих 

макросистем, однородных зон [15]. В результате этого интегро-дифференциальные 
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уравнения, описывающие лучистый теплообмен, заменяются аппроксимирующей 

системой алгебраических уравнений, с помощью которой определяются искомые 

температуры зон и тепловые потоки между зонами: 
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где m, n, m’, n’ – соответственно число объемных и поверхностных зон и соседних зон; aij – 

коэффициент радиационного теплообмена; Тi, tп – температура объемных и поверхностных 

зон; Vij – расход топочной среды из i-й в j-ю зону; ci, cor – теплоемкость; αkij – коэффициент 

теплоотдачи конвекцией; Fij – площадь соприкосновения объемной и поверхностной зон; 

Vojr – приток рабочего тела в j-тую зону; kj– коэффициент теплопередачи; Fj – площадь 

зоны. 

Рассмотрим современную ТПК и расчет теплообмена в топке зональным методом 

(рис. 2). Топка парового котла энергоблока 300 МВт представляет собой прямоугольный 

параллелепипед высотой Н = 35 м, шириной а = 14 м, глубиной b = 7 м. С внутренней 

стороны поверхности топки выполнены вертикальными водяными трубами. Котел 

работает на мазуте, 16 горелок (обозначены на рис. 2а стрелками) суммарной 

производительностью ВК = 67 т/ч установлены встречно в 2 яруса по 8 горелок в ярусе на 

высоте 3 и 6 м от поверхности пода. 
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Рис. 2. Топка парового котла энергоблока мощностью 300 МВт и распределение изотерм 

по высоте топки (а); деление топки на расчетные зоны (б); результаты расчета 

распределения плотности потока излучения по вертикальной оси фронтальной стены (в) 

 

Теплота сгорания мазута Qp
н = 41 мДж/кг, коэффициент ослабления среды в топке к = 

= 0,162 [15]. Расположение изотермы по высоте топки показано на рис. 2а. Факел по 

высоте и периметру заполняет всю топку и представляет собой прямой эллиптический 

цилиндр. Изотермы делят по высоте прямой эллиптический цилиндр на семь объемных 

а б в 
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зон. Зональный метод расчета теплообмена в топке заключается в следующих расчетных 

процедурах. Топка парового котла разбивается в соответствии с расположением изотерм 

по высоте на 11 объемных и 46 поверхностных зон (см. рис. 2б). Составляется система 

интегро-дифференциальных уравнений, описывающих лучистый теплообмен, которая 

аппроксимируется системой алгебраических уравнений (2), (3). В системе алгебраических 

уравнений излучение прямоугольных газовых объемов заменяется излучением 

поверхностей прямоугольных параллелепипедов, а тепловое излучение поверхностей 

определяется по закону Стефана – Больцмана (см. формулу (2)). Результаты расчета на 

компьютере распределения плотности потока излучения факела по вертикальной оси 

фронтальной стены представлены на рис. 2в [15]. Сравнение расчетных (см. рис. 2в) и 

экспериментальных данных [19] показывает, что их различие по высоте топки может 

составлять 200 %. 

ПРОБЛЕМА РАСЧЕТА ТЕПЛООБМЕНА 

В ПЕЧАХ, ТОПКАХ, КАМЕРАХ СГОРАНИЯ 

Несмотря на то, что зональный метод совершенствуется на протяжении последних 

50 лет и стал инженерным методом расчета, он обладает рядом недостатков: 

дифференциальные и алгебраические уравнения теплообмена не являются 

аналитическими выражениями, формулами, которыми при возможности решения 

дифференциальных уравнений заканчивается построение любой теории; 

при расчете излучения газового объема используется закон Стефана – Больцмана, 

полученный для расчета излучения поверхностей твердых тел; 

рассчитывается излучение и поглощение излучения макроуровневых систем, 

объемных и поверхностных зон, и не учитывается излучение микроуровневых систем, 

излучающих частиц; 

объемное излучение газа, заполняющего камеру печи, топки, КС, в расчетах 

заменяется поверхностным. 

Зональный и другие вышеперечисленные методы расчета теплообмена в ТПК, 

основанные на законе Стефана – Больцмана, не позволяют выявить распределение 

тепловых потоков по всем поверхностям нагрева (см. рис. 2в). Зональным методом 

рассчитывали распределение плотности потока излучения в камерах ТПК по высоте 

только одной фронтальной стены по вертикальной оси ее симметрии [15–18]. В России и 

за рубежом в XX веке в учебниках, монографиях, статьях отсутствовали данные по 

расчету плотности потоков излучения по периметру и высоте фронтальной и боковой стен, 

на периферии стен ТПК. Расчет и анализ распределения плотностей потоков излучения 

факела по высоте фронтальной стены ТПК, выполненный по законам теплового излучения 

поверхностей твердых тел, показал значительную погрешность расчета. Современная 

наука не догма, совершенно очевидно, что возникла необходимость принципиально иного 

решения задачи теплообмена в ТПК. 

На протяжении всего ХХ века в учебниках для студентов, монографиях, статьях 

российских и зарубежных ученых отсутствовала информация о распределении тепловых 

потоков излучений в топках по оси симметрии и на периферии экранных поверхностей 

(рис. 3), о причинах повреждения горелочных устройств, неравномерности 

парообразования и внутритрубных отложений по высоте и периметру экранных 

поверхностей, о причинах неравномерности распределения тепловых потоков излучения 

газовых объемов по поверхностям нагрева в ДСП, ФНП, КС ГТУ. 
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Рис. 3. Топка парового котла энергоблока мощностью 500 МВт 

«ЗиО-Подольск» [3] 

 

Локальные знания о теплообмене в ДСП, ФНП, ТПК, КС ГТУ добывали в ходе 

многочисленных экспериментальных исследований теплообмена в энергоустановках. Эти 

дорогостоящие и ресурсозатратные методы не позволяли получить полную картину 

теплообмена вследствие своей сложности, малой эффективности, отсутствия серийных 

приборов для измерения тепловых потоков излучений по поверхностям нагрева в дуговых 

и факельных печах, топках, КС. 

Отсутствие надежных методик расчета теплообмена в электродуговых и факельных 

печах, топках, КС приводило к сдерживанию их развития, совершенствования, препят-

ствовало созданию инновационных, более совершенных факельных печей, топок с 

различным расположением горелок и факелов в них (рис. 4, 5). 
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Рис. 4. Внутренний вид части топки 

парового котла, горелки, факела [3]  

  

Рис. 5. Горелка с факелом [3] 

 

ЗАКЛЮЧЕНИЕ 

Отсутствие надежной методики расчета теплообмена не позволяло студентам, 

конструкторам проводить расчеты теплообмена и прогнозировать создание более 

совершенных эффективных факельных печей, топок, КС. В конструкцию большей части 

прямоточных ТПК и ФНП несколько десятилетий не вносилось кардинальных изменений, 

способствующих выравниванию распределения потоков излучений факелов по 

поверхностям нагрева. С открытием в России, в ТвГТУ, законов теплового излучения 

газовых объемов факелов появилась возможность рассчитать с высокой точностью 

теплообмен (распределение тепловых потоков по поверхностям нагрева), прогнозировать 

изменение распределения тепловых потоков по поверхностям нагрева при изменении 

конструкций факельных печей, топок, КС и расположения горелок и факелов в них, 

создавать инновационные факельные печи, топки, КС, в которых выравниваются тепловые 

потоки по поверхностям нагрева, снижаются время нагрева, расход топлива, 

эксплуатационные расходы на промывку котлов от внутритрубных отложений, расходы на 

опытно-экспериментальные исследования КС ГТУ, уменьшается количество разрушений 

КС, повышается ресурс их работы. 
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TRAINING UNIVERSITY STUDENTS IN ENGINEERING, INNOVATIVE WORK 

BASED ON THE RESEARCH WORK PERFORMED 

AT TVER STATE TECHNICAL UNIVERSITY. 

PART I. THE PROBLEM OF TRAINING UNIVERSITY STUDENTS AND DESIGNERS 

IN HEAT TRANSFER CALCULATIONS 

IN FURNACES, FURNACES, COMBUSTION CHAMBERS 

 

A.N. Makarov 

Tver State Technical University (Tver) 

 

Abstract. The article presents the laws of thermal radiation of gas volumes of electric 

arcs in electric arc steelmaking furnaces (EASF) and torches in flare heating furnaces (FHF), 

furnaces of steam boilers (FSB) of power plants, combustion chambers (CC) of gas turbine units 

(GTU), gas turbine engines (GTE), discovered at the Department of Power Supply and Electrical 

Engineering of Tver State Technical University (TSTU). Part I of the article presents the problem 

of teaching university students to calculate heat transfer in EASF, FHF, FSB, CC of GTU, which 

existed in the 1950–1990s, before the discovery of the laws of thermal radiation of gas volumes. 

Based on the discovered laws, modern methods for calculating heat transfer in EAF, FBC, FBC, 

CC have been developed at TvSTU.  

Keywords: scientific research, scientific discovery, heat exchange, radiation, furnaces, 

fireboxes, combustion chambers, students, training. 
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